

Personal Intersection Speed Advisory System(PISAS)

Slobodan Gutesa, Ph.D Candidate.

Co-Authors: Joyoung Lee, Branislav Dimitrijevic, Dejan Bensenski

ITS Resource Center

New Jersey Institute of Technology

Motivation

Provide individual drivers with safe and efficient speed advisory information at intersections by utilizing real-time traffic and signal status through existing communications infrastructure

Background

- ☐ The pilot test of a personal signal assistant application has been conducted in Germany under pre-timed control system
- □ The application is only available with high-end vehicle models equipped with a proper opt-in device
- NJIT research team developed a mobile phonebased PISAS application to encourage more participants

Overall System Architecture

End of Green/Red Determination

- The corridor consist of fully actuated intersections
- End of Green/ Red may vary and it is not fixed
- Probabilistic approach combined with history data used for prediction

New Jersey's Science & Technology University

PISAS Mobile Application

Pilot Test Corridor: US-1 (Green St. – Plainfield Ave.)

Intersection ID Number	Major Street	Minor Street	Milepost	
1401	US 1	Green St	35.69	
1402	US 1	Gill Ln	35.10	
1403	US 1	Ford Ave	34.24	
1404	US 1	Parsonage	33.64	
1405	US 1	Grandview Ave	33.07	
1406	US 1	Prince St	31.48	
1407	US 1	Forest Haven Blvd	31.10	
1408	US 1	Old Post Rd North	30.54	
1409	US 1	Old Post Rd South	29.88	
1410	US 1	Wooding Ave	29.52	
1411	US 1	Plainfield Av	29.06	

Evaluation Results

Evaluation Period	8 AM- 10AM		1PM-5PM		10 PM-12AM		Average	
Test Type	W/	W/O	W/	W/	W/O	W/O	W/	W/O
	PISAS	PISAS	PISAS	PISAS	PISAS	PISAS	PISAS	PISAS
Average Travel	12	20	10	9	13	17	10.3	16.7
Time (min)	12	20	10	J	13	17	10.5	10.7
Number of runs	4	4	5	5	4	4	13	13
Travel Time	8		7		4		6.4	
Saving								
(min)								

Results

Concluding Remarks

- ☐On the 6.5-mile test corridor, 6.4 minutes of average travel time savings were recorded
- □ Differences between PISAS and unequipped vehicle were more obvious during AM and off-peak hours
- ☐ During peak-hours the vehicle is often forced to follow prevailing speed maintained by the traffic

Concluding Remarks

- □PISAS is a DSRC-free V2I Connected Vehicles Application that requires no additional roadside equipment to obtain advisory speed
- □PISAS is designed to exploit commercial cellular network service (i.e., 3G and 4G-LTE)
- □PISAS system can be easily plugged into existing traffic control management system to capture real-time traffic signal data
- □PISAS enables rapid implementation without significant additional cost

Future Research

- ☐ Evaluate PISAS using various performance measures to address:
 - Effectiveness of the PISAS application in improving mobility and environmental performances
 - Quality of wireless communications (e.g., communication delay, packet drop).
- Expand test corridor to implement PISAS field test
- Develop an interface enabling direct connection from a traffic controller to a PISAS device

Questions

Advisory Speed Flowchart

R: Target Distance to trigger (e.g., 200 m) X: Distance to the intersection (unit: meter) Start v : Current vehicle speed (unit: km/h) ss: Current signal controller clock (unit:sec) GreenEnd: End time of Green signal (unit: sec) Calculate: RedEnd: End time of Red signal (unit:sec) Amber: Yellow time (unit: sec) rg: remaining green time (rg = GreenEnd+Amber-ss) (unit: sec) X<R rr: remaining red time (rr = RedEnd-ss) (unit: sec) SigSTA = Current Signal Status (Green:0, Red: 1, Yellow: 2) Yes a: Estimated Acceleration/Deceleration Rate (unit: m/sec^2) av: Advisory Speed (m/sec) Green or Yellow Red Get MaxSpeed: Max Speed for Control (e.g., Speed Limit) SigSTA MinSpeed: Min Speed for Control (e.g., 30 km/h) rr = RedEnd-ss rg = GreenEnd+Amber-ss $a = 2*(X-v*rr) / (rr^2)$ $a = 2*(X-v*rg) / (rg^2)$ a>=-3.0 and a<3.0 a>=-3.0 and a<3.0 Yes Yes Yes Yes a>-3.0 a<-3.0 av = v+a*rg av = v+a*rrYes av<=MaxSpeed av>MaxSpeed Yes av = MaxSpeed Message Display Message Display Message Display Message Display Message Display Message Display Advisory Speed Range: Prepare To Stop Advisory Speed Range: Advisory Speed Range: Prepare To Stop Maintain Speed Limit MinSpeed ~ MaxSpeed MinSpeed ~ av av ~ MaxSpeed